7^2+a^2=10^2

Simple and best practice solution for 7^2+a^2=10^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7^2+a^2=10^2 equation:



7^2+a^2=10^2
We move all terms to the left:
7^2+a^2-(10^2)=0
We add all the numbers together, and all the variables
a^2-51=0
a = 1; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·1·(-51)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*1}=\frac{0-2\sqrt{51}}{2} =-\frac{2\sqrt{51}}{2} =-\sqrt{51} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*1}=\frac{0+2\sqrt{51}}{2} =\frac{2\sqrt{51}}{2} =\sqrt{51} $

See similar equations:

| F(x)=x-14 | | 10+15=-5(6x-5) | | 3x+13=6x+28 | | (2(z-8))/(12)=(3)/(2) | | C+7d=13 | | 51.25=6s+4.99 | | 5/x-3=25/x+9 | | 3/4x=8/16 | | (40*40)+(9*9)=x^2 | | -12=-(x)/(3)-10 | | 2y5=4 | | 1/6y-3=-9 | | 1=d/60+d/40 | | 2(x+4)=12x+8-10x | | 2(x-1)=3-(x-7) | | (2x+1^2)-(x+1^7)=1 | | 2.75/11=x/9 | | x=18+4x-14 | | a^2-14=-45 | | 94=x+4 | | x2+13x=−40 | | (6+y)(3y+1)=0 | | 8(4x+3)=32x-5 | | 8x-50+9x=180 | | 5x-3(x-4)=-8+4x+6 | | 5^(6x-6)=44 | | x/10=8/40 | | 5^6x-6=44 | | 13/10a=13 | | 5x-2/4=4 | | 15.19=2s+4.01 | | 4x+(15+3x)+(25+x)=88 |

Equations solver categories